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functions of a random variable
• if X is a random variable with cdf FX (x), than any function Y = g(X ) is also a random variable

• we write y = g(x), with

g(x) : ΩX → ΩY

• since Y is a function of X , we can describe the probabilistic behavior of Y in terms of X

P(Y ∈ A) = P(g(X ) ∈ A) for any event A

• we associate g with an inverse mapping, denoted g−1,

g−1(A) = {x ∈ ΩX : g(x) ∈ A}
g−1({y}) = {x ∈ ΩX : g(x) = y}

where g−1 is usually a set.

• remark: we only write g−1(y) = x if ∃!x for which g(x) = y
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probability distribution of Y

• if Y = g(X ), then we can write for any set A ⊂ ΩY

P(Y ∈ A) = P(g(X ) ∈ A)

= P(x ∈ ΩX : g(x) ∈ A)

= P(X ∈ g−1(A))

which satisfies Kolmogorov’s axioms

• if X is discrete, then the sample space ΩX is countable.

− the sample space for Y = g(X ) is ΩY = {y : y = g(x), x ∈ ΩX } is also countable

− it follows that Y is also a discrete random variable

− The pmf for Y is ∀y ∈ SY ,

fY (y) = P(Y = y) =
∑

x∈g−1(y)

P(X = x) =
∑

x∈g−1(y)

fX (x)
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binomial rv

• definition: a discrete random variable X has a binomial distribution if its pmf is of the form

fX (x) = P(X = x) =

(
n

x

)
px(1 − p)n−x

for x = 0, 1, . . . , n (with 0 < p < 1) X ∼ Bin(n, p)

• example: what is the probability of obtaining exactly three heads in five coin tosses? Suppose that
the probability of a head is 1

4 .

P(X = 3) =

(
5
3

)(
1
4

)3(
1 − 1

4

)2

≈ 8.79%

where the binomial coefficient accounts for rearrengements of the sequence of heads and tails.
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binomial transformation

what is the probability of getting exactly two tails in the example above?

• consider Y = n − X . ΩY = {y : y = g(x), x ∈ ΩX} = {0, 1, . . . , n}

• since g−1(y) is a single point {x = n − y},

fY (y) =
∑

x∈g−1(y)

fX (x) = fX (n − y)

=

(
n

n − y

)
pn−y (1 − p)y =

(
n

y

)
(1 − p)ypn−y

Y ∼ Bin(n, 1 − p)

• the last equality follows from the fact that(
n

n − y

)
=

n!

(n − n + y)!(n − y)!
=

n!

y !(n − y)!
=

(
n

y

)
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looks of the binomial distribution
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binomial distribution as n grows
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functions of a continuous random variable

• it is sometimes possible to find simple formulae for the cdf and pdf of Y = g(X ) in terms of the
cdf and pdf of X and the function g

FY (y) = P(Y ≤ y)

= P(g(X ) ≤ y)

= P ({x ∈ ΩX : g(x) ≤ y})

=

∫
{x∈ΩX : g(x)≤y}

fX (x) dx

• though. . . identifying {x ∈ ΩX : g(x) ≤ y} and integrating fX (x) over this region are not always
easy
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uniform transformation

• definition: a continuous random variable X with pdf of the form

fX (x) =
1

b − a

for a < x < b (and zero otherwise) is said to have a uniform distribution between (a, b)
X ∼ U(a, b)

• consider X ∼ U(0, 2π) and Y = sin2(X ), then
− SY = {y : y = sin2(x), x ∈ (0, 2π)} = [0, 1]
− g−1(y) is not a single point.
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uniform transformation

• Then

P(Y ≤ y) = P(X ≤ x1) + P(x2 ≤ X ≤ x3) + P(X ≥ x4)

= 2P(X ≤ x1) + 2P(x2 ≤ X ≤ π),

due to symmetry of sin2(·) and uniformity of X

• Even in this apparently simple case, the expression for the cdf of Y is not that simple...
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looks of the uniform distribution
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keeping track of the sample space

• it is important to keep track of the support of the distribution:

ΩX = {x : fX (x) > 0}
ΩY = {y : y = g(x) for some x ∈ SX}

• it is easiest to deal with monotone transformations, because then it is a one-to-one mapping from
ΩX onto ΩY , uniquely pairing (x , y)

− increasing if u > v ⇒ g(u) > g(v)
− decreasing if u > v ⇒ g(u) < g(v)

• if g is monotone, g(·) is a bijection and g−1(y) is single-valued, that is, g−1(y) = x if and only if
y = g(x)
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keeping track of the sample space

• if increasing,

{x ∈ ΩX : g(x) ≤ y} = {x ∈ ΩX : g−1(g(x)) ≤ g−1(y)}
= {x ∈ ΩX : x ≤ g−1(y)}

then

FY (y) =

∫
x∈ΩX :x≤g−1(x)

fX (x)dx =

∫ g−1(x)

−∞
fX (x)dx = FX (g

−1(y))
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keeping track of the sample space

• if decreasing,

{x ∈ ΩX : g(x) ≤ y} = {x ∈ ΩX : g−1(g(x)) ≥ g−1(y)}
= {x ∈ ΩX : x ≥ g−1(y)}

then

FY (y) =

∫
x∈ΩX :x≥g−1(x)

fX (x)dx =

∫ ∞

g−1(x)
fX (x)dx = 1 − FX (g

−1(y))
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cdf of a monotone transformation

example: uniform-exponential relationship.

• Suppose that X ∼ U(0, 1), for which fX (x) = 1 and FX (x) = x , and then make the transformation
Y = g(X ) = − lnX

• Since

d

dx
g(x) =

d

dx
(− lnX ) = − 1

x
< 0 for 0 < x < 1

and the transformation is monotone and decreasing.

• SX = (0, 1) ⇒ SY = (0,∞)

• for any y > 0, x = e−y and hence FY (y) = 1 − FX (e
−y ) = 1 − e−y

(exponential distribution)
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looks of the exponential distribution
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pdf of a monotone transformation

• if Y = g(X ) is a continuous random variable, then we may obtain its pdf by differentiating the cdf

• theorem: let X ∼ fX (x) with support ΩX and Y = g(X ), where g is monotone; if fX (x) is
continuous on ΩX and g−1(y) has a continuous derivative on ΩY , then the pdf of Y is given by

fY (y) =

{
fX (g

−1(y))
∣∣∣ d
dy

g−1(y)
∣∣∣ y ∈ SY

0 otherwise

• proof: we have that, by the chain rule,

fY (y) =
d

dy
FY (y) =


fX (g

−1(y)) d
dy
g−1(y) if increasing

−fX (g
−1(y)) d

dy
g−1(y) if decreasing

which can be expressed as above. ■
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example

• term d
dy
g−1(y) is an indirect adjustment for the support of the distribution

• take the simplest example: X ∼ U([0, 1]), therefore fX (x) = 1

• the transformation g(x) = 2x produces Y ∼ U([0, 2]) with fY (y) =
1
2

• using the proof above,

fY (y) = fX (g
−1(y))︸ ︷︷ ︸
=1

· d

dy
g−1(y)︸ ︷︷ ︸
= 1

2

=
1
2

i.e., the distribution "thinned out" over a larger support set
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inverted gamma

• example: let X ∼ G(n, β), with pdf

fX (x) =
1

(n − 1)!βn
xn−1 e−x/β , 0 < x < ∞

where β is a positive constant, n is a positive integer, and Y = 1/X

• then ΩX = ΩY = (0,∞) and g−1(y) = 1/y , yielding

fY (y) = fX (g
−1(y))

∣∣∣∣ ddy g−1(y)

∣∣∣∣
=

1
(n − 1)!βn

y1−n e−1/(β y) 1
y2

=
1

(n − 1)!βn
y−(n+1) e−1/(β y) (inverted gamma)
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piecewise monotone transformations

• it is sometimes the case that g is monotone over certain intervals, allowing us to apply the above
results for each one of these regions

• example: square transformation Y = X 2 for a continuous X
− FY (y) = P(X 2 ≤ y) = P(−√

y ≤ X ≤ √
y) = FX (

√
y)− FX (−

√
y)

− fY (y) = d
dy

FY (y) = 1
2√y

[
fX (

√
y) + fX (−

√
y)

]
for y > 0

− expression is the sum of two pieces that represent the intervals where g(x) = x2 is monotone.
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more formally. . .

• theorem (CB 2.1.8): let X have pdf fX (x), let Y = g(X ), and suppose that there exists a
partition A0,A1, . . . ,Ak of ΩX such that P(X ∈ A0) = 0 and fX (x) is continuous on each Ai , and
that there exist functions g1(x), . . . , gk(x) defined respectively on A1, . . . ,Ak that satisfy

(i) g(x) = gi (x) for x ∈ Ai

(ii) gi (x) is monotone on Ai

(iii) the set ΩY = {y : y = gi (x), x ∈ Ai} is the same for each i = 1, . . . , k

(iv) g−1
i has a continuous derivative on SY for each i = 1, . . . , k

then. . .

fY (y) =

{ ∑k
i=1 fX (g

−1
i (y))

∣∣∣ d
dy

g−1
i (y)

∣∣∣ y ∈ ΩY

0 otherwise
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chi-squared distribution

• example: let X ∼ N(0, 1), with pdf

ϕ(x) =
1√
2π

e−x2/2, −∞ < x < ∞

and consider g(x) = x2, which is monotone on (−∞, 0) and (0,∞).

• According to the theorem above, we choose

A0 = {0}
A1 = (−∞, 0), g1(x) = x2, g−1

1 (y) = −√
y

A2 = (0,∞), g2(x) = x2, g−1
2 (y) =

√
y

fY (y) =
1

2
√
y

[
ϕ(

√
y) + ϕ(−√

y)
]

=
1√
2π

1
√
y
e−y/2, 0 < y < ∞

(chi-squared distribution, 1 dof)
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looks of the normal distribution
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looks of the chi-squared distribution
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probability integral transform

• theorem: let X have a continuous and strictly increasing cdf FX (x) and define the random
variable Y = FX (X ). Then Y ∼ U(0, 1)

• proof: for 0 < y = FX (x) < 1,

FY (y) = P(FX (X ) ≤ y)

= P
(
F−1
X [FX (X )] ≤ F−1

X (y)
)

= P
(
X ≤ F−1

X (y)
)

= FX

(
F−1
X (y)

)
= y ⇔ y ∼ U(0, 1)

■

• remark 1: defining F−1
X (y) = inf{x : FX (x) ≥ y} for 0 < y < 1 avoids constancy issues in FX

• remark 2: very useful theorem in it allows generating random numbers from all distributions.
Sample u from U([0, 1]) and solve FX (x) = u.
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expected value, mean, expectation,. . .

• definition: the expected value of a random variable g(X ) is

Eg(X ) =

{ ∫∞
−∞ g(x) fX (x) dx if continuous∑
x∈SX

g(x)fX (x) =
∑

x∈SX
g(x)P(X = x) if discrete

if infinite, we say that the expectation does not exist.

• example: exponential mean
− suppose X ∼ Exp(λ), with pdf fX (x) = 1

λ
e−x/λ for λ > 0 and x ≥ 0

E(X ) =

∫ ∞

0

x

λ
e−x/λ dx

=
(
−xe−x/λ

)∣∣∣∞
0

+

∫ ∞

0
e−x/λ dx

=

∫ ∞

0
e−x/λ dx = λ

since
∫∞
0

1
λ
e−x/λ = 1.
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mean of a binomial random variable

• if X ∼ Bin(n, p), then

E(X ) =
n∑

x=0

x

(
n

x

)
px(1 − p)n−x

=
n∑

x=1

x

(
n

x

)
px(1 − p)n−x

⋆
= n

n−1∑
y=0

(
n − 1
y

)
py+1(1 − p)n−y−1

= np
n−1∑
y=0

(
n − 1
y

)
py (1 − p)(n−1)−y

︸ ︷︷ ︸
=1

= np

equality (⋆) used the fact that x
(
n
x

)
= n

(
n−1
x−1

)
.
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mean of the Cauchy distribution

• if X ∼ Cauchy with pdf fX (x) = 1
π(1+x2) , then

E|X | =

∫ ∞

−∞

|x |
π

1
1 + x2 dx

=
2
π

∫ ∞

0

x

1 + x2 dx

= lim
M→∞

2
π

∫ M

0

x

1 + x2 dx

= lim
M→∞

2
π

ln(1 + x2)

2

∣∣∣∣M
0

= lim
M→∞

2
π

ln(1 +M2)

2
= ∞

however. . . if E|X | = ∞, then E(X ) = ∞ as well!!
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expectation as a linear operator

• taking expectations is a linear operation because, for any random variables X and Y ,

E(aX + bY ) = aE(X ) + bE(Y )

as long as a and b are constants

• moreover (CB 2.2.5), if the expectations of g(x) and h(x) exists,

(a) E[ag(X ) + bh(X ) + c] = aE[g(X )] + bE[h(X )] + c

(b) if g(x) ≥ 0 for all x , then E[g(X )] ≥ 0

(c) if g(x) ≥ h(x) for all x , then E[g(X )] ≥ E[h(X )]

(d) if a ≤ g(x) ≤ b for all x , then a ≤ E[g(X )] ≤ b
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proofs for a continuous random variable

(a) by definition,

E[ag(X ) + bh(X ) + c] =

∫ ∞

−∞
[ag(x) + bh(x) + c]fX (x) dx

= a

∫ ∞

−∞
g(x)fX (x) dx + b

∫ ∞

−∞
h(x)fX (x) dx

+ c

∫ ∞

−∞
fX (x) dx

= aE[g(X )] + bE[h(X )] + c ■

(b, c, d) E[ℓ(X )] =
∫∞
−∞ ℓ(x)fX (x)dx ≥ 0 given that ℓ(x) ≥ 0 and that fX (x) > 0 for x ∈ SX ■
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expectation as distance minimizer

• theorem (CB 2.2.6): measure the distance between a random variable X and a constant µ by the
mean quadratic distance E(X − µ)2. Then µ = E(X ) is the value that minimizes that distance

• proof: algebraic, rather than the usual calculus approach

E(X − µ)2 = E[X − E(X ) + E(X )− µ]2

= E[X − E(X )]2 + E[E(X )− µ]2 + 2E[X − E(X )][E(X )− µ]

= E[X − E(X )]2 + [E(X )− µ]2 + 2[E(X )− E(X )][E(X )− µ]

= E[X − E(X )]2 + [E(X )− µ]2

both terms are nonnegative and, although we have no control over the variance of X , the second
term is zero for µ = E(X ) ■
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uncentered vs centered moments

• definition: the kth (uncentered) moment of X is

µ̃k = E(X k)

whereas the kth centered (or central) moment is

µk = E(X − µ)k

where µ = µ̃1 = E(X )

• examples:
− dispersion ∼ variance σ2 = var(X ) = E(X − µ)2

− asymmetry ∼ skewness sk(X ) = E[(X − µ)/σ]3

− tail thickness ∼ kurtosis k(X ) = E[(X − µ)/σ]4
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exponential variance

• example: let X ∼ Exp(λ) and hence E(X ) = λ

var(X ) = E(X − λ)2

=

∫ ∞

0
(x − λ)2

1
λ
e−x/λ dx

=

∫ ∞

0
(x2 − 2xλ+ λ2)

1
λ
e−x/λ dx

=

∫ ∞

0
x2 1

λ
e−x/λ dx − 2λ

∫ ∞

0
x

1
λ
e−x/λ dx + λ2

∫ ∞

0

1
λ
e−x/λ dx

= 2λ2 − 2λ2 + λ2

= λ2

• overdispersion coefficient = standard deviation
mean = 1
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shape of the exponential distribution
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variance of an affine transformation
• theorem: if X is a random variable with finite variance, it then follows that

var(aX + b) = a2var(X )

for any constants a and b

• proof: it follows from the definition that

var(aX + b) = E[aX + b − E(aX + b)]2

= E[aX + b − aE(X )− b]2

= E[aX − aE(X )]2

= a2 E[X − E(X )]2

= a2 var(X )

• it is sometimes easier to use var(X ) = E(X 2)− [E(X )]2

var(X ) = E[X − EX ]2

= E[X 2 − 2XEX + (EX )2]

= EX 2 − (EX )2
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binomial variance

• example: let X ∼ Bin(n, p) and hence E(X ) = np

E(X 2) =
n∑

x=0

x2
(n
x

)
px (1 − p)n−x =

n∑
x=0

xn
(n − 1
x − 1

)
px (1 − p)n−x

= n
n∑

x=1

x
(n − 1
x − 1

)
px (1 − p)n−x

= n

n−1∑
y=0

(y + 1)
(n − 1

y

)
py+1(1 − p)(n−1)−y

= np

n−1∑
y=0

y
(n − 1

y

)
py (1 − p)(n−1)−y + np

n−1∑
y=0

(n − 1
y

)
py (1 − p)(n−1)−y

= np[(n − 1)p + 1]

• var(X ) = E(X 2)− [E(X )]2 = np(np − p + 1)− (np)2 = np(1 − p)
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moment generating function

• definition: let X be a random variable with cdf FX ; the moment generating function (mgf) of X is
given by

MX (t) = E(etX )

if there is an h > 0 such that E(etX ) exists for all t in −h < t < h. If the expectation does not
exist in a neighborhood of 0, we say that the moment generating function does not exist.

• More explicitly,

MX (t) =

∫ ∞

−∞
etx fX (x)dx

MX (t) =
∑
x

etxP(X = x)

if X is continuous and discrete, respectively.
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moment generating function

• If X has mgf MX (t), then

E(X k) = M
(k)
X (0) with M

(k)
X (0) =

dk

dtk
MX (t)

∣∣∣∣
t=0

• proof: assuming that we may differentiate under the integral

d
dt

MX (t) =
d
dt

∫ ∞

−∞
etx fX (x)dx =

∫ ∞

−∞

d
dt

etx fX (x) dx

=

∫ ∞

−∞
xetx fX (x) dx = E(XetX )

M
(1)
X (0) = E

(
XetX

)∣∣∣
t=0

= E(X )

and, analogously, M(k)
X (0) = E

(
X ketX

)∣∣
t=0 = E(X k) ■
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gamma mgf

• example: let X ∼ G(α, β) with pdf

fX (x) =
1

Γ(α)βα
xα−1e−x/β , 0 < x < ∞ α > 0 β > 0

MX (t) =
1

Γ(α)βα

∫ ∞

0
xα−1e−x(1/β−t) dx

=
1

Γ(α)βα

∫ ∞

0
xα−1e

−x
(

β
1−βt

)−1

dx︸ ︷︷ ︸
=

∫∞
0 xa−1e−x/bdx = Γ(a)ba

=
1

Γ(α)βα
Γ(α)

(
β

1 − βt

)α

=

(
1

1 − βt

)α

, if t < 1/β

E(X ) = M
(1)
X (0) =

αβ

(1 − βt)α+1

∣∣∣∣
t=0

= αβ

• if t ≥ 1/β the mgf does not exist.
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standard normal mgf

• example: let X have the standard normal distribution. Then

MX (t) = E(etX ) =

∫ ∞

−∞
etx

1√
2π

e−
x2
2 dx =

∫ ∞

−∞

1√
2π

e−
x2
2 +txdx

and we have that

−x2

2
+ tx =

1
2
t2 − 1

2
(x − t)2

and so

MX (t) = e
1
2 t2
∫ ∞

−∞

1√
2π

e−
(x−t)2

2 dx = e
1
2 t2
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binomial mgf

• example: let X ∼ Bin(n, p), so the moment generating function is

MX (t) =
n∑

x=0

etx
(
n

x

)
px(1 − p)n−x

=
n∑

x=0

(
n

x

)
(pet)x(1 − p)n−x

=
[
pet + (1 − p)

]n
given that the binomial theorem yields (u + v)n =

∑n
x=0

(
n
x

)
uxvn−x (proof left as exercise)
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why mgf?

• usefulness of the mgf:
− if mgf exists, yields infinite number of moments;
− and especially so when moments characterize distributions.

• this begs the question: are two distributions equivalent if they have the same infinite set of
moments?

• unfortunately, the answer is no: there may exist two different distributions with the same infinite
moments.
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two pdfs with the same moments
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a counterexample

• let Z be a standard normal with p.d.f. ϕ(z) and x = ez ⇔ z = ln x with x ∈ (0,∞) and z ∈ R.
Then

f (x) =
ϕ(ln x)

x
=

1√
2πx

e
−(ln x)2

2

and then E(X k) = E(ekZ ) = e
k2
2 .

• now let g(x) = f (x)[1 + h(x)], where h(x) = sin(2π ln x). Then∫ ∞

0
xk f (x)h(x)dx =

∫ ∞

0
xk 1√

2πx
e

−(ln x)2
2 sin(2π ln x)dx .
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a counterexample

• let U have a normal distribution with mean 0 and unitary variance. Writing u = ln x , we get∫ ∞

0
euk

1√
2π

e
−u2

2 sin(2πu)du =

∫ ∞

0

1√
2π

e
−u2

2 +uk sin(2πu)du

= e
1
2 k2
∫ ∞

0

1√
2π

e
−(u−k)2

2 sin(2πu)du

= e
1
2 k2

E [sin(2πu)] = 0

where the last equality follows from symmetry of sin(·).

• it follows that ∫ ∞

0
xkg(x)dx =

∫ ∞

0
xk f (x)dx +

∫ ∞

0
xk f (x)h(x)dx

=

∫ ∞

0
xk f (x)dx

so f (x) and g(x) have the same moments.

• in other words: two different distributions may have the same infinite set of moments /
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how to circumvent non-uniqueness of moments?

• problem does not arise for random variables with a bounded support. In this case, infinite
sequence of moments does uniquely determine distribution

• theorem: if FX and FY have all moments, then. . .

(a) if X and Y have bounded support, then FX (u) = FY (u) for all u if and only if E(X k ) = E(Y k ) for all
integers k = 0, 1, 2, . . .

(b) if MX (t) = MY (t) for all t in some neighborhood of zero, then FX (u) = FY (u) for all u.
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log-normal counterexample

• example: log-normal mgf doesn’t exist, so it can’t fulfill conditions of previous theorem.

E(etX ) = E

[
∞∑
k=0

(tX )k

k!

]
=

∞∑
k=0

tk
E(X k)

k!

=
∞∑
k=0

tk
ek

2/2

k!
= ∞

for t > 0. Another way to see this is

E(etX ) = E(ete
Z

) =
1√
2π

∫ ∞

−∞
ete

z

e−
z2
2 dz =

1√
2π

∫ ∞

−∞
ete

z− z2
2 dz

≥ 1√
2π

∫ ∞

0
ete

z− z2
2 dz ≥ 1√

2π

∫ ∞

0
e
t
[
1+z+ z2

2! +
z3
3!

]
− z2

2 dz = ∞
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convergence of mgfs

• theorem: suppose {Xn, n = 1, 2, . . .} is a sequence of random variables, each with mgf MXn (t),
such that

lim
n→∞

MXn (t) = MX (t)

for all t in a neighborhood of zero. Then there is a unique cdf FX , whose moments are given by
MX (t), such that limn→∞ FXn (u) = FX (u)

• convergence of mgfs for |t| < h implies convergence of cdfs (sufficient condition, but not
necessary!)
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Poisson approximation
• theorem: if X ∼ Bin(n, p) and Y ∼ Poisson(λ) with λ = np, then

P(X = x) ≃ P(Y = x) =
e−λλx

x!

for large n and small np
• proof: the mgf of Y is

MY (t) =
∞∑
x=0

etx
e−λλx

x!
= e−λ

∞∑
x=1

(etλ)x

x!
= e−λee

tλ = eλ(e
t−1)

because ex =
∑∞

k=0
xk

k!
. Recall that

MX (t) = [pet + (1 − p)]n =
[
1 + p(et − 1)

]n
=

[
1 +

np

n
(et − 1)

]n
=

[
1 +

λ

n
(et − 1)

]n

lim
n→∞

MX (t) = lim
n→∞

[
1 +

λ

n

(
et − 1

)]n
= eλ(e

t−1) = MY (t)

since limn→∞
(
1 + an

n

)n
= ea.
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looks of the Poisson distribution
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mgf of affine transformations

• theorem: for any constants a and b, the mgf of the random variable aX + b is given by
MaX+b(t) = ebtMX (at)

• proof: by definition,

MaX+b(t) = E
[
e(aX+b)t

]
= E

[
eaXtebt

]
(exponential property)

= ebtE
[
e(at)X

]
(ebt is constant)

= ebtMX (at) ■
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Leibniz’s rule

• interchanging the order of integration and differentiation is common in theoretical statistics, and
hence it is convenient to spend some time characterizing conditions under which this operation is
legitimate

• fundamental theorem of calculus + chain rule: if f (x , θ), aθ = a(θ) and bθ = b(θ) are
differentiable with respect to θ, then

d
dθ

∫ bθ

aθ

f (x , θ)dx = f (bθ, θ)
dbθ
dθ

− f (aθ, θ)
daθ
dθ

+

∫ bθ

aθ

∂

∂θ
f (x , θ) dx

and, in particular,
d
dθ

∫ b

a

f (x , θ) dx =

∫ b

a

∂

∂θ
f (x , θ)dx

for a and b constants

• Exchanging derivative and integral over a finite range poses no problems.
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what happens if range is infinite?

• in principle, the question is really whether we may interchange limits and integration given that a
derivative is a special kind of limit

∂

∂θ
f (x , θ) = lim

δ→0

f (x , θ + δ)− f (x , θ)

δ

and hence ∫ ∞

−∞

∂

∂θ
f (x , θ)dx =

∫ ∞

−∞
lim
δ→0

f (x , θ + δ)− f (x , θ)

δ
dx ,

whereas
d
dθ

∫ ∞

−∞
f (x , θ) dx = lim

δ→0

∫ ∞

−∞

f (x , θ + δ)− f (x , θ)

δ
dx

• let’s then justify interchanging limits and integration!
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Lebesgue’s dominated convergence theorem

• theorem: suppose the function h(x , y) is continuous at y0 for each x and that there exists a
dominating function g(x) with a finite integral, i.e., g(x) such that

(i) |h(x , y)| ≤ g(x) for all x and y ;

(ii)
∫∞
−∞ g(x) dx < ∞

then
lim
y→y0

∫ ∞

−∞
h(x , y) dx =

∫ ∞

−∞
lim
y→y0

h(x , y)dx

• key condition: the dominating function is well-behaved and hence puts enough discipline on
h(x , y) to ensure the validity of interchanging the order of limits and integrals
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applying to the difference in the limit

• theorem: suppose f (x , θ) is differentiable at θ = θ0, namely

lim
δ→0

f (x , θ0 + δ)− f (x , θ0)

δ
=

∂

∂θ
f (x , θ)

∣∣∣∣
θ=θ0

exists for every x ,

and there exists a function g(x , θ0) and a constant δ0 > 0 such that

(i)
∣∣∣ f (x,θ0+δ)−f (x,θ0)

δ

∣∣∣ ≤ g(x , θ0) for all x and |δ| ≤ δ0.

(ii)
∫∞
−∞ g(x , θ0)dx < ∞

then
d
dθ

∫ ∞

−∞
f (x , θ)dx

∣∣∣∣
θ=θ0

=

∫ ∞

−∞

[
∂

∂θ
f (x , θ)

∣∣∣∣
θ=θ0

]
dx

• the first condition is also known as Lipschitz condition, which imposes smoothness on a function.
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Lagrange expansion

• typically, f (x , θ) is differentiable at all θ, not at just a single value θ0

• in this case, we may replace the Lipschitz-like condition by another condition that often proves
easier to verify by an application of the mean value theorem. It follows that, for fixed x and θ0,
and for |δ| ≤ δ0

f (x , θ0 + δ)− f (x , θ0)

δ
=

∂

∂θ
f (x , θ)

∣∣∣∣
θ=θ0+δ∗(x)

for some δ∗(x) such that |δ∗(x)| ≤ δ0

• hence it suffices to find a g(x , θ) such that ∂
∂θ

f (x , θ)
∣∣
θ=θ′

≤ g(x , θ) for all θ′ such that
|θ − θ′| ≤ δ0
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example: moment recursions

• example: let’s calculate d
dλ

E(X k) for some integer k > 0, with X ∼ Exp(λ)

• if we could move the differentiation inside the integral, we would have

d
dλ

E(X k) =
d

dλ

∫ ∞

0
xk 1

λ
e−x/λdx

=

∫ ∞

0

∂

∂λ
xk 1

λ
e−x/λ dx

=

∫ ∞

0

xk

λ2

( x
λ
− 1
)
e−x/λ dx

=
E(X k+1)

λ2 − E(X k)

λ

• E(X k+1) = λE(X k) + λ2 d
dλ

E(X k) recursion makes the calculation of higher-order moments
relatively easy, existing for many other distributions

• CB example 2.4.6: if X ∼ N(µ, 1), then E(X k+1) = µE(X k)− d
dµ

E(X k)
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example: moment recursions
• to justify the interchange, we bound the derivative of xk(1/λ)e−x/λ.

• we have that ∣∣∣∣ ∂∂λ
(
xke−x/λ

λ

)∣∣∣∣ =
xke−x/λ

λ2

∣∣∣ x
λ
− 1
∣∣∣ ≤ xke−x/λ

λ2

( x
λ
+ 1
)

because x
λ
> 0.

• for some constant δ0 satisfying 0 < δ0 < λ, take

g(x , λ) =
xke−x/(λ+δ0)

(λ− δ0)2

(
x

λ− δ0
+ 1
)

• we then have that ∣∣∣∣ ∂∂λ
(
xke−x/λ

λ

) ∣∣∣∣
λ=λ′

∣∣∣∣ ≤ g(x , λ)

for all λ′ such that |λ′ − λ| ≤ δ0.

• finally, since the exponential distribution has all its moments,
∫∞
−∞ g(x , λ)dx < ∞ as long as

λ− δ0 > 0.
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interchanging summation and differentiation

• justification for taking the derivative inside the summation is more straightforward than for
integration

• theorem: if the series
∑∞

x=0 h(x , θ) converges for every θ ∈ (θ, θ̄) and

(a) ∂
∂θ

h(x , θ) is continuous in θ for each x

(b)
∑∞

x=0
∂
∂θ

h(x , θ) converges uniformly on every closed bounded subinterval of (θ, θ̄)

then. . . interchanging summation and differentiation is legitimate
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application: mean of the geometric distribution

• example: let X ∼ fX (x) = P(X = x) = θ(1 − θ)x , supposing we can interchange derivatives and
sums:

d
dθ

∞∑
x=0

θ(1 − θ)x =
∞∑
x=0

d
dθ

θ(1 − θ)x

=
∞∑
x=0

[
(1 − θ)x − xθ(1 − θ)x−1]

=
1
θ

∞∑
x=0

θ(1 − θ)x − 1
1 − θ

∞∑
x=0

xθ(1 − θ)x

• since
∑∞

x=0 θ(1 − θ)x = 1 for all 0 < θ < 1, its derivative is 0.

• then
1
θ

=
1

1 − θ
E(X ) ⇐⇒ E(X ) =

1 − θ

θ
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Reference:

• Casella and Berger, Ch. 2

Exercises:

• 2.1, 2.4, 2.6, 2.7, 2.9, 2.13-2.18, 2.23-2.28, 2.32-2.33, 2.38.
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