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functions of a random variable

if X is a random variable with cdf Fx(x), than any function Y = g(X) is also a random variable

we write y = g(x), with

g(x) : Qx—Qy

since Y is a function of X, we can describe the probabilistic behavior of Y in terms of X

P(Y € A) = P(g(X) e A) for any event A

we associate g with an inverse mapping, denoted g1,

g'(A) = {xeQx:glx) €A}
g ({yh) = {xe:gl)=y}

where g71 is usually a set.

remark: we only write g7*(y) = x if 3lx for which g(x) =y

3/63



probability distribution of Y

o if Y = g(X), then we can write for any set A C Qy

P(Y € A) P(g(X) € A)
P(x € Qx : g(x) € A)

P(X € g '(A))

which satisfies Kolmogorov's axioms

o if X is discrete, then the sample space Qx is countable.
— the sample space for Y = g(X) is Qy = {y : y = g(x), x € Qx} is also countable
— it follows that Y is also a discrete random variable
— The pmf for Y is Vy € Sy,
fry) = B(Y=y) = > PX=x) = > &

x€g™(y) x€g™(y)
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binomial rv

o definition: a discrete random variable X has a binomial distribution if its pmf is of the form

n X n—x
x(x) = P(X=x) = <X>p(1—p)
for x=0,1,...,n (with0 < p < 1) X ~ Bin(n, p)

e example: what is the probability of obtaining exactly three heads in five coin tosses? Suppose that
the probability of a head is %.

P(X=3) = (2) (i)3<1i>2 ~ 8.79%

where the binomial coefficient accounts for rearrengements of the sequence of heads and tails.
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binomial transformation

what is the probability of getting exactly two tails in the example above?
o consider Y =n—X. Qy ={y: y=g(x), x€ Qx} ={0,1,...,n}
e since g~ '(y) is a single point {x = n — y},

friy) = fx(x) = fx(n—y)
—y)

xeg

Y ~ Bin(n,1 — p)

o the last equality follows from the fact that

n n! _ n! _ n
(ny> T e )in—y) T yin—y) <y>
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looks of the binomial distribution
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binomial distribution as n grows
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functions of a continuous random variable

e it is sometimes possible to find simple formulae for the cdf and pdf of Y = g(X) in terms of the
cdf and pdf of X and the function g

Fy(y) = P(Y§Y)
= P(g(X) <y)
= P({x€Qx:gx)<y})

= / fx(x) dx
{x€x: g(x)<y}

o though. .. identifying {x € Qx : g(x) < y} and integrating fx(x) over this region are not always
easy
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uniform transformation

o definition: a continuous random variable X with pdf of the form

1
b—a

fx(X) =

for a < x < b (and zero otherwise) is said to have a uniform distribution between (a, b)
X ~ U(a, b)

e consider X ~ U(0,27) and Y = sin?(X), then

- Sy ={y: y=sin*(x), x € (0,27)} = [0,1]
— g Y(y) is not a single point.
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uniform transformation

sin'(x)
1+
y
3k
0 X, Xy T Xy x, 2:‘
e Then
P(Y<y) = PX<x1)+Plx<X<x3)+P(X > x)

2P(X < x1) +2P(x2 < X < 7),

due to symmetry of sin?(-) and uniformity of X

e Even in this apparently simple case, the expression for the cdf of Y is not that simple...
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looks of the uniform distribution
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keeping track of the sample space

e it is important to keep track of the support of the distribution:

Qx
Qy

{x: fx(x) > 0}
{y : y = g(x) for some x € Sx}

e it is easiest to deal with monotone transformations, because then it is a one-to-one mapping from
Qx onto Qy, uniquely pairing (x, y)
— increasing if u > v = g(u) > g(v)
— decreasing if u> v = g(u) < g(v)

o if g is monotone, g(-) is a bijection and g !(y) is single-valued, that is, g~ *(y) = x if and only if
y =g(x)
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keeping track of the sample space

o if increasing,

{xeQx: g (g(x) <g ' (y)}
{xeQx:x<g )}

{xeQx: g(x) <y}

then

g (%)
) = [ s = [T se = Ads o)
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keeping track of the sample space

o if decreasing,

{xeQx: g ' (gx) =g ()}
= {xeQx:x>g '(y)}

{xe€Qx: g(x) <y}

then

P = [ R = [ AWe = 1o FE )

(=)
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cdf of a monotone transformation

example: uniform-exponential relationship.

e Suppose that X ~ U(0, 1), for which fx(x) =1 and Fx(x) = x, and then make the transformation
Y=g(X)=—-InX

e Since
d d 1
ag(x) = a(—lnX) = <0 for 0<x<1
and the transformation is monotone and decreasing.
e Sx :(0,1) = Sy = (0,00)

e forany y >0, x=e ¥ and hence Fy(y) =1— Fx(e’)=1—¢e"
(exponential distribution)
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looks of the exponential distribution
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pdf of a monotone transformation

e if Y = g(X) is a continuous random variable, then we may obtain its pdf by differentiating the cdf

e theorem: let X ~ fx(x) with support Qx and Y = g(X), where g is monotone; if fx(x) is
continuous on Qx and g *(y) has a continuous derivative on Qy, then the pdf of Y is given by

hy) = | KETON[EE 0] vesy
0 otherwise

e proof: we have that, by the chain rule,

d fx(gil(}/))diygfl(y) if increasing
fY(Y) = ?Fy(y) =
Y —fx(g_l(Y))diyg_l(y) if decreasing

which can be expressed as above.
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example

e term di'yg’l(y) is an indirect adjustment for the support of the distribution

o take the simplest example: X ~ U([0, 1]), therefore fx(x) =1

o the transformation g(x) = 2x produces Y ~ U([0,2]) with fy(y) = %
e using the proof above,
_ d _ 1
Aly) = K '0) e ') = 5
—— ay
=1 N—

i.e., the distribution "thinned out" over a larger support set
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inverted gamma

o example: let X ~ G(n, 3), with pdf
_ 1 n—1 —x/B
fx(x) = 7(n—1)!5”x e , 0<x< o

where (3 is a positive constant, n is a positive integer, and Y = 1/X

e then Qx = Qy = (0,00) and g 1(y) = 1/y, yielding

_ d _
M) = 0D a0
_ 1 1-n_-1/(8y) 1
G y?
Wy_("ﬂ) e M) (inverted gamma)
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piecewise monotone transformations

e it is sometimes the case that g is monotone over certain intervals, allowing us to apply the above
results for each one of these regions

o example: square transformation Y = X2 for a continuous X
- Fy(y) =P(X? <y) =P(=y < X < ¥) = Fx(\/¥) = Fx(=vY)
~ () =g Fr() = 55 [x(V9) + &x(=y7)] fory > 0

— expression is the sum of two pieces that represent the intervals where g(x) = x2 is monotone.
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more formally. . .

e theorem (CB 2.1.8): let X have pdf fx(x), let Y = g(X), and suppose that there exists a
partition Ao, As, ..., Ak of Qx such that P(X € Ag) = 0 and fx(x) is continuous on each A;, and
that there exist functions gi(x), ..., gk(x) defined respectively on Ag, ..., A« that satisfy

(i) g(x) = gi(x) for x € A;
(if) gi(x) is monotone on A;

(iii) the set Qy = {y : y = gi(x),x € A;} is the same for each i =1,..., k

(iv) g,._1 has a continuous derivative on Sy foreach i =1,... k
then. ..

d%g,-’l(y)‘ yE€Qy
otherwise

Ay) = {OZ (&)
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chi-squared distribution

o example: let X ~ N(0,1), with pdf

o(x) = e_xz/z, —00 < X < 00

V2m

and consider g(x) = x2, which is monotone on (—o0,0) and (0, c0).

e According to the theorem above, we choose

Ao = {0}

Ar = (-00,0), gi(x)= X2’ gl_l(.y) =y
Az = (0,00), g(x)= X27 g{l(y) =y
M) = g [ ey
= iie_”2 0<y<
V2 Y 7

(chi-squared distribution, 1 dof)
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looks of the normal distribution
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looks of the chi-squared distribution

probability density function
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probability integral transform

e theorem: let X have a continuous and strictly increasing cdf Fx(x) and define the random
variable Y = Fx(X). Then Y ~ U(0,1)

e proof: for 0 <y = Fx(x) <1,

Fyv(y) = P(Fx(X)<y)
= P(FFx(X)] < Fc ()
= P(X<F())

= Fx(F)?l(y)):y & y~U(@01)

o remark 1: defining F*(y) = inf{x : Fx(x) >y} for 0 < y < 1 avoids constancy issues in Fx

o remark 2: very useful theorem in it allows generating random numbers from all distributions.
Sample u from U([0,1]) and solve Fx(x) = u.
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expected value, mean, expectation,...

o definition: the expected value of a random variable g(X) is

_ I g(x) fx(x) dx if continuous
Ee(X) = { Dovesy 8(X)fx(x) =32, cs, 8(X)P(X = x) if discrete

if infinite, we say that the expectation does not exist.

o example: exponential mean
— suppose X ~ Exp(\), with pdf fx(x) = % e /A for A\>0and x >0

/oo X e /M dx
o A
[e @)
(o) [
0 0

[e @)
= / e/ Mdx = A
0

E(X)

since [;° Te/* =1,

27 / 63



mean of a binomial random variable

e if X ~ Bin(n, p), then

E(X)

[+

equality (x) used the fact that x(7)

n
X
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mean of the Cauchy distribution

o if X ~ Cauchy with pdf fx(x) =

E[X]|

however. .. if E|X]| = oo, then E(X) =

1+><2

then

Fx o1
= d
[wﬂ 1+x2

E/ al dx
T Jo 14 x2

X

5 M
lim f/ dx
M—oco T Jo 1+ x2

lim
M—oo T 2

lim

M—oco T 2

oo as welll!

2 In(1+x3) 1

x?)

0

2 In(1+

M?)

20/ 63



expectation as a linear operator

o taking expectations is a linear operation because, for any random variables X and Y,
E(aX + bY) = aE(X) + bE(Y)
as long as a and b are constants
e moreover (CB 2.2.5), if the expectations of g(x) and h(x) exists,
(a) E[ag(X) + bh(X) + c] = aE[g(X)] + bE[h(X)] + ¢
(b) if g(x) >0 for all x, then E[g(X)] >0
(c) if g(x) > h(x) for all x, then E[g(X)] > E[h(X)]

(d) if a< g(x) < bforall x, then a <E[g(X)] < b
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proofs for a continuous random variable

(a) by definition,

E[ag(X) + bh(X)+ ] = [ " [ag(x) + bh(x) + c]fx (x) dx

a/ x)fx(x dx+b/ h(x)fx(x) dx

+ c/ fx(x) dx
aE[g(X)] + bE[A(X)] + ¢ [ ]

(b,c,d) E[£(X)] = [T €(x)fx(x)dx > 0 given that £(x) > 0 and that fx(x) > 0 for x € Sx [ ]
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expectation as distance minimizer

e theorem (CB 2.2.6): measure the distance between a random variable X and a constant p by the
mean quadratic distance E(X — p)?. Then p = E(X) is the value that minimizes that distance

e proof: algebraic, rather than the usual calculus approach
E(X—pf = E[X—E(X)+E(X) - ]’
= E[X - E(X)]* +E[E(X) — u]* + 2E[X — E(X)][E(X) — 4]
= E[X - EX)]* + [E(X) - u]” + 2[E(X) — E(X)][E(X) — 4]
= E[X —EX)* + [E(X) - 4]

both terms are nonnegative and, although we have no control over the variance of X, the second
term is zero for p = E(X) [ ]
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uncentered vs centered moments

o definition: the kth (uncentered) moment of X is
jix = B(XY)

whereas the kth centered (or central) moment is

e = B(X - p)
where p = fiz = E(X)
e examples:
— dispersion ~ variance 02 = var(X) = E(X — p)?
— asymmetry ~ skewness sk(X) = E[(X — p)/o]3
— tail thickness ~ kurtosis k(X) =E[(X — u)/o]*
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exponential variance

o example: let X ~ Exp(A) and hence E(X) = A
var(X) = E(X - )\)?
/ (x = A)? 1 e/ dx
o A

x% = 2xA + A\® 1 e/ dx
A
0

/oxzie_x/kdx—w\/o x%e_x/kdx—l—/\z/o %e_x/)‘dx

222 — 227 + )2
)\2

standard deviation _ 1

o overdispersion coefficient = mean
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shape of the exponential distribution
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variance of an affine transformation
o theorem: if X is a random variable with finite variance, it then follows that
var(aX + b) = a’var(X)

for any constants a and b

e proof: it follows from the definition that

var(aX +b) = E[aX +b—E(aX + b)]?
= E[aX + b— aE(X) — b]*
E[aX — aE(X)]?

= A E[X —E(X)]?
a*var(X)

o it is sometimes easier to use var(X) = E(X?) — [E(X)]?

var(X) = E[X —EX]?
= E[X® - 2XEX + (EX)?]
= EX?— (EX)?
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binomial variance

o example: let X ~ Bin(n, p) and hence E(X) = np
200 = Sr(e-ar = San( T )ea-ar
= nz (- )p(l p)"*
- nZ(H-l)(n;l)Py“(l p)r
- an ", N —p)n y+an( N pry
= np[(n—l)p+11

o var(X) = E(X?) — [E(X)]? = np(np — p+1) — (np)? = np(1 — p)
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moment generating function

o definition: let X be a random variable with cdf Fx; the moment generating function (mgf) of X is
given by

Mx (t) = E(e™)

if there is an h > 0 such that E(e™) exists for all t in —h < t < h. If the expectation does not
exist in a neighborhood of 0, we say that the moment generating function does not exist.

e More explicitly,

><§
~
=
=
Il

/ ™ fx(x)dx

e”P(X = x)

X

><§
~
=
ot
Il

if X is continuous and discrete, respectively.
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moment generating function

o If X has mgf Mx(t), then

. d
E(X¥) = MP(0) with MP(0) = 3 Mx(2)

t=0

e proof: assuming that we may differentiate under the integral

% Mx(t) = d etXfX(x) dx:/

dt —oo —oo

g "
9 e fx(x) dx

= / xe™fx(x) dx = E(Xe™)

MP(0) = E(Xetx)

L =E(X)

t=

and, analogously, M{”(0) = E (X*e%) |,_o = E(X*)
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gamma mgf

o example: let X ~ G(«, 3) with pdf

x(x)

Mx(t)

E(X)

1 Xa—le—x/ﬁ

M(a)p> ’

1 /oo a—1_—x(1/8-t)
- X e dx
Ma)s> Jo

1 a1 —x L)"
_— X e 1-pt dx
rwwﬂA

= fooo xa—le—x/bgy = r(a)b?
1 B “
s " (125)
(i)
1—-pt)

M (0) =

0<x< o0 a>0

if t<1/8

aff

a—poeil, —

t=0

o if t > 1/ the mgf does not exist.

5>0
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standard normal mgf

e example: let X have the standard normal distribution. Then

& 1 <2 1 2
Mx(t) = E(e¥) = / e¥——e 7Tdx = / ez T™dx
x(t) (™) - T

and we have that

2
—g ot = 12—4 t)?
and so
1.2 [ 1 (x=1)2 1.2
Mt:eft/ e 2 dx = ez2f
x(®) e V2
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binomial mgf

e example: let X ~ Bin(n, p), so the moment generating function is
_ . tx [ N X n—x
Mx(t) = XE:oe <X>p (1-p)
- n ty\x n—x
= 1—
> <X>(pe) (1-p)

x=0
= [pe'+(1-p)]"

n n X . n—Xx

given that the binomial theorem yields (u+ v)” = >°7_ (7)u*v"™* (proof left as exercise)
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why mgf?

o usefulness of the mgf:

— if mgf exists, yields infinite number of moments;
— and especially so when moments characterize distributions.

e this begs the question: are two distributions equivalent if they have the same infinite set of
moments?

o unfortunately, the answer is no: there may exist two different distributions with the same infinite
moments.
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two pdfs with the same moments

6 / £
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a counterexample

e let Z be a standard normal with p.d.f. ¢(z) and x = €* < z = In x with x € (0,00) and z € R.

Then
o(In x) 1 =(no?
f = = 2
() X V2mx €

k2

and then E(X*) =E(e*) =e=.

e now let g(x) = f(x)[1 + h(x)], where h(x) = sin(27Inx). Then

oo (In %)
/ x*f(x)h / =5 sin(27 In x)dx.
0 27rx
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a counterexample
e let U have a normal distribution with mean 0 and unitary variance. Writing u = In x, we get

—u

/oo .1 2 o q 7u2+ .
e" 2 sin(2wu)du / ——e 2 " sin(2ru)du
[¢] o V2w

e
V2
1 © 1 —w=k*
eékz/ e 2 sin(2nu)du
0 \/271'

= e%kzlE[sin(27ru)] =0

where the last equality follows from symmetry of sin(-).

o it follows that

/OOO x"g(x)dx = /Oo ka(x)dx+/°o F(x)h(x)dx

0 0

/000 xF(x)dx

so f(x) and g(x) have the same moments.

e in other words: two different distributions may have the same infinite set of moments &
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how to circumvent non-uniqueness of moments?

e problem does not arise for random variables with a bounded support. In this case, infinite
sequence of moments does uniquely determine distribution

e theorem: if Fx and Fy have all moments, then. ..

(a) if X and Y have bounded support, then Fx(u) = Fy(u) for all u if and only if E(X¥) = E(Y*) for all
integers k =0,1,2,...

(b) if Mx(t) = My (t) for all t in some neighborhood of zero, then Fx(u) = Fy(u) for all u.
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log-normal counterexample

e example: log-normal mgf doesn't exist, so it can't fulfill conditions of previous theorem.

= (tX)* = (E(X
E(e™) = E [Z (tk|) - Z t (kl )
k=0 k=0
o0 k2 /2
_ k€ _
= Dt Kl *
k=0
for t > 0. Another way to see this is
z 1 o z _ 22 1
]E(etx) = E(ete ) = — ete ei?dz —
V2T J oo 27
1 etez—%dz 5 1 * er[1+z+§+
v 27 0 27 0
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convergence of mgfs

o theorem: suppose {X,, n=1,2,...} is a sequence of random variables, each with mgf Mx, (t),
such that

lim Mx,(t) = Mx(t)

for all t in a neighborhood of zero. Then there is a unique cdf Fx, whose moments are given by
Mx(t), such that lim,— o Fx,(u) = Fx(u)

e convergence of mgfs for |t| < h implies convergence of cdfs (sufficient condition, but not
necessary!)
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Poisson approximation
e theorem: if X ~ Bin(n, p) and Y ~ Poisson(\) with A = np, then
e AN

x|

for large n and small np
o proof: the mgf of Y is

x

(e} Y o0 t
_ o € /\ L (e"A)  _a eta
My(t) = XE:(, e = e XEZI 0 = e e
because e* =32 ’,i—k, Recall that
Mx(t) = [pe'+(1—p)]" = [L+p(e'—1)]"

lim Mx(t) = lim [1+A(e —1)} = D

n—o00 n—oo

. . n
since limp— oo (1 + 5’7") = e’.

e)\(et—l)

[1+an7 et—l)]n = {1+%(et—1)r
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looks of the Poisson distribution
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mgf of affine transformations

o theorem: for any constants a and b, the mgf of the random variable aX + b is given by
MaX+b(t) = ethx(at)

e proof: by definition,

MaX+b(t) - E e(aX+b)t
= E[eXe”] (exponential property)
= €"E e(‘")x} (e is constant)
e®* My (at) ]
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Leibniz’s rule

e interchanging the order of integration and differentiation is common in theoretical statistics, and
hence it is convenient to spend some time characterizing conditions under which this operation is
legitimate

o fundamental theorem of calculus + chain rule: if f(x,0), ag = a(6) and by = b(0) are
differentiable with respect to 6, then

be db@ da@
d@/ F(x,0) dx = F(by, 0) S /9 O£, 0)dx

and, in particular,
i/b f(x,0) dx = ' f(x,0) dx
de J, ’ ), 00

for a and b constants

e Exchanging derivative and integral over a finite range poses no problems.
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what happens if range is infinite?

e in principle, the question is really whether we may interchange limits and integration given that a
derivative is a special kind of limit

0 f(x,0+9) — f(x,0)

g 1050 = fm, (0
and hence o Fx. 04 8)— F(x.6)
[eS) B o x,0+ — f(x,
_OO%)"(X,O)de/_Oo glno 5 dx,
whereas

d [* L < f(x,0+6) — f(x,0)
@/_m f(X’e)dX7<!1no/_oo 5 dx

o let's then justify interchanging limits and integration!
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Lebesgue’s dominated convergence theorem

o theorem: suppose the function h(x, y) is continuous at yo for each x and that there exists a
dominating function g(x) with a finite integral, i.e., g(x) such that

(i) |h(x,y)| < g(x) for all x and y;
(i) [ g(x)dx < oo

then

lim /Oc h(x,y)dx = /OO lim h(x,y)dx

Y=o ) oo J oo Y Y0

e key condition: the dominating function is well-behaved and hence puts enough discipline on
h(x,y) to ensure the validity of interchanging the order of limits and integrals
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applying to the difference in the limit

o theorem: suppose f(x,0) is differentiable at § = 6y, namely

lim Flo00+9) = flx00) _ 0 f(x,0) exists for every x,
6—0 1) 00 0=0¢

and there exists a function g(x, 6o) and a constant do > 0 such that

(i) [ Hloto)=rlutol| < g(x, go) for all x and [3] < do.

(i) [ &(x,00)dx < oo

then
d oo

@/ f(x,0)dx

<19
- an f(Xva)
s

dx
0=64

o the first condition is also known as Lipschitz condition, which imposes smoothness on a function.
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Lagrange expansion

o typically, 7(x, 8) is differentiable at all 6, not at just a single value 6o

e in this case, we may replace the Lipschitz-like condition by another condition that often proves
easier to verify by an application of the mean value theorem. It follows that, for fixed x and 6o,
and for |§] < do

f(X,go-i-(S)— f(X,go) 0

5 = %f(xﬁ)

0=00+05+(x)
for some d.(x) such that |§.(x)| < do

o hence it suffices to find a g(x, ) such that 2 f(x,H)‘gzg, < g(x,0) for all 6 such that
|6 —0'| < do
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example: moment recursions

e example: let’s calculate % E(X¥) for some integer k > 0, with X ~ Exp())

o if we could move the differentiation inside the integral, we would have
d [7 L
dxJ, T X

9 41

d k o —x/A
SE(X) = e~ dx

Il
s~
3
V‘X
N x
/
> %
|
=
S—
o
x
~
>
o
X

E(X*Y)  E(XY)

A2 A

o E(X* ) = AE(X¥) + A2 d% E(X*) recursion makes the calculation of higher-order moments
relatively easy, existing for many other distributions

o CB example 2.4.6: if X ~ N(u,1), then E(X*™) = uE(X*) - di E(X¥)
12
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example: moment recursions

o to justify the interchange, we bound the derivative of x*(1/\)e /.

b Xkefx/)\ Xkefx/k x Xkefx/)\ x
G (S | R R A
‘8/\( Y )‘ v o= Gy

e we have that

because 5 > 0.

o for some constant dp satisfying 0 < do < ), take

sk g—x/(+b0) X
S0 =" mp (7w )

o we then have that

8 [ xke />
‘ﬁ (f) < g(x,A)

for all X such that |\ — A| < &o.

A=\

o finally, since the exponential distribution has all its moments, ffooo g(x,A\)dx < oo as long as
A —0do > 0.
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interchanging summation and differentiation

e justification for taking the derivative inside the summation is more straightforward than for
integration

o theorem: if the series >°°° h(x, ) converges for every 6 € (6, 0) and
(a) % h(x,0) is continuous in @ for each x
(b) D520 % h(x, ) converges uniformly on every closed bounded subinterval of (8, 8)

then. .. interchanging summation and differentiation is legitimate
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application: mean of the geometric distribution

o example: let X ~ fx(x) = P(X = x) = 6(1 — 6)*, supposing we can interchange derivatives and
sums:

d & . = d «
529(1—9) = 259(1—9)

x=0

|
NgE

[(1—6)" —x0(1—6)1

X
Il

I
D =
()8 °

0(1—0)" — 119 > x6(1 - 0)*

X
Il
<]
X
Il
o

e since .2 0(1—0)"=1forall 0 < <1, its derivative is 0.
o then
= E(X) <= E(X) = ——
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5. Exercises
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Reference:

o Casella and Berger, Ch. 2

Exercises:

e 21,24, 26, 27,29, 2.13-2.18, 2.23-2.28, 2.32-2.33, 2.38.
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